Crystal Structure and Electrical Conductivity of $\mathbf{R b}_{18} \mathbf{C u}_{31} \mathbf{C l}_{49}$

S. GELLER and XIE SISHEN*
Department of Electrical and Computer Engineering, University of Colorado, Boulder, Colorado 80309

Received August 22, 1985

Abstract

Crystals of $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$ belong to the cubic space group $\overline{I 4} 3 d\left(T_{d}^{6}\right)$ with $a=21.220 \pm 0.008 \AA, Z=4$. One of the two crystallographically nonequivalent Rb^{+}ions clearly has nine-coordination to Cl^{-}ions; the other has what might be called $(7+2)$-coordination to Cl^{-}ions. All Cu^{+}ions are tetrahedrally coordinated to Cl^{-}ions; each of two of the four crystallographically nonequivalent Cu^{+}ions has a very long $\mathrm{Cu}^{+}-\mathrm{Cl}^{-}$distance. The arrangement of the $\left[\mathrm{CuCl}_{4}\right]$ tetrahedra is complex with mostly corner and some edge sharing. The Cu^{+}ions in at least one set of positions are disordered, i.e., there are $12 \mathrm{Cu}^{+}$ ions in a set of 16 c positions. At 298 K , the specific electrical conductivity measured at 1 kHz is $3.2 \times$ $10^{-5} \Omega^{-1} \mathrm{~cm}^{-1}$, while at 420 K , it is $1.1 \times 10^{-3} \Omega^{-1} \mathrm{~cm}^{-1}$. A straight line is obtained for $\log _{10}(\sigma \mathrm{~T})$ vs T^{-1}, with an enthalpy of activation of motion of 0.35 eV . Two octahedra and two five-cornered pyramids of Cl^{-}ions connect the $\left[\mathrm{CuCl}_{4}\right]$ tetrahedra through face sharing throughout the crystal structure. It is probable that $\mathrm{Rb}_{38} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$ is a true solid electrolyte, albeit a poor one, with considerable correlation in the motions of the Cu^{+}charge carriers. © 1986 Academic Press, Inc.

1. Introduction

There have been two reports $(1,2)$ implying the existence of one or more solid electrolytes in the system $\mathrm{RbCl}-\mathrm{CuCl}$. There is also substantial indecision regarding the nature and even the formulas of the phases in this system (3). We have undertaken, therefore, to define these phases, in particular those that appear to be stable at room temperature. All formulas heretofore reported for phases in this system are incorrect.

The simplest phase in the system has the formula $\mathrm{Rb}_{2} \mathrm{CuCl}_{3}$, and appears to be isostructural with $\mathrm{K}_{2} \mathrm{CuCl}_{3}$ (4). Aside from the $\mathrm{Rb}_{2} \mathrm{CuCl}_{3}$, the remaining phases are com-

[^0]plex, not only structurally, but their formulas are unusual for such double salts. There are three more phases in the system. Here we report on $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$, which, with some qualification, appears to be a true solid electrolyte.

The phase that is clearly a true solid electrolyte has the formula $\mathrm{Rb}_{4} \mathrm{Cu}_{9} \mathrm{Cl}_{13}$ (5). The remaining phase has the formula $\mathrm{Rb}_{4^{-}}$ $\mathrm{Cu}_{5} \mathrm{Cl}_{9}$, the structure of which is now being completed (6).

2. Experimental

Starting materials were as described elsewhere (3). Initial specimens were prepared by melting appropriate mixtures of reactants, RbCl and CuCl , in sealed Pyrex tubes containing $0.5 \mathrm{~atm} \mathrm{~N}_{2}$, stirring while in the molten state, followed by annealing at

TABLE I
Preparation Conditions for Different Formulations

Nominal formula	Molar ratio, CuCl RbCl	Melting temp. $\left({ }^{\circ} \mathrm{C}\right)$	Annealing temp. $\left({ }^{\circ} \mathrm{C}\right)$	Annealing time (hr)
$\mathrm{Rb}_{3} \mathrm{Cu}_{5} \mathrm{Cl}_{8}$	1.667	9	150	22
$\mathrm{Rb}_{17} \mathrm{Cu}_{29} \mathrm{Cl}_{46}$	1.706	220	160	96
$\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$	1.722	200	160	36
$\mathrm{Rb}_{9} \mathrm{Cu}_{16} \mathrm{Cl}_{25}$	1.778	180	165	120

${ }^{\text {a }}$ Not to be confused with melting point.
lower temperatures. Four specimens with different ratios of reactants were made (Table I). Examination of X-ray diffraction powder photographs indicated that the most probable formula of the particular compound, in which we were interested, was $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$. The crystal structure determination confirmed this formula.

Small crystals were obtained by the Bridgman technique. A spherical crystal of 0.20 mm diam. was obtained from one of these crystals with a sphere grinder (7).

Powder photographs had indicated that crystals of $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$ were body-centered cubic with $a=21.23(2) \AA$. Buerger precession camera photographs taken with MoK α radiation confirmed that the crystal is body-centered cubic with diffraction symmetry $m 3 m$. Reflections $h k l$ are present only when $h+k+l=2 n$; reflections $h h l$ are present only when $2 h+l=4 n$; hhl permutable. This implies that the most probable space group is $\bar{I} 33 d\left(T_{d}^{6}\right)$.

The data used for the structure determination and refinement were collected with a Nicolet P3/F autodiffractometer using the $\theta-2 \theta$ scanning technique with scan rates ranging from 1.0 to 29.3° per min and $\mathrm{Mo} K \alpha$ radiation monochromatized by a graphite crystal in the incident beam. The scanning range was 0.8° below α_{1} to 0.9° above α_{2}. The cell constant was obtained by leastsquares refinement of measured spacings of 15 reflections. The value obtained is 21.220(3) Å.

The volume of the unit cell is 9555(4) \AA^{3}. The formula weight of $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$ is 5245.4 ; there are four $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$ per unit cell, giving an X-ray density of 3.646 g cm^{-3}. The density, measured pycnometrically, using ethylene dibromide as the heavy liquid, was $3.59 \mathrm{~g} \mathrm{~cm}^{-3}$. Generally, all reasonable errors in such a measurement lead to a low result, as in the case here. However, unfortunately, this low result could imply that the formula should contain one less CuCl ; as will be seen later the probability that this is so must be extremely low. The measured density does rule out a higher CuCl content.

The linear absorption coefficient for Mo $K \alpha$ radiation is $170 \mathrm{~cm}^{-1}$ giving for μR, 1.70. Lorentz-polarization and absorption corrections were applied to the data.

The total number of independent reflections measured in the range $2.0^{\circ} \leq 2 \theta \leq$ 50.0° was 1109 ; of these 282 were accepted as observed, based on the criterion:

$$
F_{\mathrm{obs}}^{2}>3 \sigma(1)
$$

where

$$
\sigma(I)=2 \cdot F_{\text {obs }} \cdot \sigma(F)
$$

Of the 282 , nine were admitted to the list of observed reflections even though subscquent calculations showed continuously that they were very likely unobserved. These were therefore rejected, leaving a total of $273 F_{\text {obs }}$ for structure refinement.

The method of preparation of the cell for conductivity measurement was similar to that described in Ref. (8). The device used for the conductivity measurements is shown in Fig. 1 of Ref. (9). Resistances were measured with a Hewlett-Packard 4274A multifrequency LCR meter. The frequency used was 1 kHz , at and below which (to 100 Hz) the results were almost independent of frequency. The capacitance was negligible in this range of frequency and over the temperature range, 298-420 K, in which the measurements were made.

3. Determination and Refinement of the Structure

The structure was solved by a combination of the direct methods (MULTAN), a three-dimensional Patterson map and trial and error. The peaks obtained from MULTAN contained almost the whole structure, but the peak heights must be ignored in this particular case.

The general positions of space group 143d are 48 -fold. $\overline{4} 3 \mathbf{d}$ also contains one 24 -fold set with site symmetry 2 , a 16 -fold set with site symmetry 3 and two 12 -fold sets with site symmetry $\overline{4}$. This distribution itself puts strong restrictions on the formula that the compound could have. For example, the formula $\mathrm{Rb}_{18} \mathrm{Cu}_{32} \mathrm{Cl}_{50}$ (or $\mathrm{Rb}_{9} \mathrm{Cu}_{16} \mathrm{Cl}_{25}$) cannot be accommodated by this space group, because too many ions, $8 \mathrm{Cu}^{+}$and $8 \mathrm{Cl}^{-}$, must be located on each threefold axis. In the case of $\mathrm{Rb}_{18} \mathrm{Cu}_{30} \mathrm{Cl}_{48}$ (or $\mathrm{Rb}_{3} \mathrm{Cu}_{5} \mathrm{Cl}_{8}$), either there could be no ions on the threefold axes, which would be very unlikely, or if any are on threefold axes, there would be a minimum of 12 of one kind on each, again, very improbable. The remaining formula of Table I, $\mathrm{Rb}_{17} \mathrm{Cu}_{29} \mathrm{Cl}_{46}$, is also easily excluded by the space group. The above arguments depend on ordered structures. Disorder, of the Cu^{+}ions, for example, could change the restrictions. However, even consideration of the particular case of Cu^{+}-ion disorder, which is the only one that could be expected, would still rule out the formulas ruled out by the ordered structures because of the required distributions of the Cl^{-}ions.

The formula $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$ is not troublefree either. Each unit cell contains $72 \mathrm{Rb}^{+}$, $124 \mathrm{Cu}^{+}$, and $196 \mathrm{Cl}^{-}$. If the largest possible number of general positions are occupied, there would be the following distribution: $48+24$ for $\mathrm{Rb}^{+} ; 2 \times 48+16+12$ for Cu^{+} and $3 \times 48+24+16+12$ for Cl^{-}. The distribution of ions in the correct structure is close to this, the only difference being for

TABLE II
Positional Parameters and Their Standard Errors

Ion	Position	x	y	z
Rb 1	48 e	$0.8781(2)$	$0.0031(2)$	$0.0944(1)$
Rb 2	24 d	$0.0281(2)$	0	$\frac{1}{4}$
Cu 1	48 e	$0.0530(2)$	$0.1895(2)$	$0.3319(2)$
Cu 2	48 e	$0.1764(3)$	$0.0617(3)$	$0.1725(3)$
Cu 3	16 c	$0.0677(2)$	$=x$	$=x$
$\mathrm{Cu4}{ }^{a}$	16 c	$0.1891(3)$	$=x$	$=x$
$\mathrm{Cl1}$	16 c	$-0.0010(6)$	$=x$	$=x$
Cl 2	48 e	$0.2516(4)$	$0.1260(3)$	$0.1195(3)$
Cl 3	48 e	$0.3645(4)$	$-0.0167(4)$	$0.1175(4)$
Cl 4	48 e	$0.0096(3)$	$0.1081(4)$	$0.1343(4)$
Cl 5	24 d	$0.2516(5)$	0	$\frac{1}{4}$
Cl 6	12 b	$\frac{7}{8}$	0	$\frac{1}{4}$

${ }^{a}$ There are only $12 \mathrm{Cu}^{+}$ions distributed over the 16 sites.
Cu^{+}. The $12 \mathrm{Cu}^{+}$ions are not in a 12 -fold set, but are disordered in a 16 -fold set.
The Patterson map indicated that all positional parameters were close to multiples of one-sixteenth.

Eventually the above considerations led to the correct structure which was refined by the least-squares technique. In all, there are 74 positional and thermal parameters plus the scale factor to be refined. In the final cycles, all positional and thermal parameters were permitted to vary to 0.00000 shift. For the 273 observed reflections $R=$ $\Sigma\left|\left|F_{\text {obs }}\right|-\left|F_{\text {calc }}\right|\right| \Sigma\left|F_{\text {obs }}\right|=0.035$. The final estimated standard deviation of an observation of unit weight is 1.00 . The final values of the positional parameters are given in Table II. Table III gives the final values of the $U_{i j}=a^{2} \beta_{i j} / 2 \pi^{2}$ and $U_{\text {iso }}=\frac{1}{3} \sum_{i} U_{i i}$, and Table IV, the axial lengths of the root-mean square vibration ellipsoids.

In the course of the least-squares calculations, occupancies of the Cu sites were varied. It was thought that especially the Cu 2 sites, with their associated high thermal parameter values, would prefer lower occupancy. All trials indicated that the disorder

TABLE III
Thermal Parameters $U_{i j},\left(\AA^{2}\right)$ and Their Standard Errors

Ion	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}	$U_{\text {iso }}$
Rb 1	$0.039(1)$	$0.040(2)$	$0.036(1)$	$0.001(2)$	$-0.009(2)$	$-0.006(2)$	$0.038(1)$
Rb 2	$0.034(2)$	$0.038(3)$	$0.072(3)$	0	0	$0.016(3)$	$0.048(3)$
Cu 1	$0.060(3)$	$0.083(3)$	$0.068(3)$	$-0.042(3)$	$-0.012(3)$	$0.012(3)$	$0.070(3)$
Cu 2	$0.095(4)$	$0.099(4)$	$0.061(3)$	$-0.043(3)$	$0.010(3)$	$-0.030(3)$	$0.085(4)$
Cu 3	$0.063(3)$	$=U_{11}$	$=U_{11}$	$0.008(3)$	$=U_{12}$	$=U_{12}$	$0.063(3)$
Cu 4	$0.067(3)$	$=U_{11}$	$=U_{11}$	$-0.024(3)$	$=U_{12}$	$=U_{12}$	$0.067(3)$
$\mathrm{Cl1}$	$0.077(4)$	$=U_{11}$	$=U_{11}$	$0.035(7)$	$=U_{12}$	$=U_{12}$	$0.077(4)$
Cl 2	$0.019(3)$	$0.029(3)$	$0.047(3)$	$-0.014(5)$	$0.006(4)$	$0.013(4)$	$0.032(3)$
Cl 3	$0.040(5)$	$0.056(5)$	$0.034(4)$	$0.033(4)$	$0.010(4)$	$0.005(4)$	$0.043(5)$
Cl 4	$0.021(4)$	$0.037(4)$	$0.040(4)$	$0.000(4)$	$0.014(4)$	$-0.001(4)$	$0.033(4)$
Cl 5	$0.029(5)$	$0.029(5)$	$0.034(5)$	0	0	$0.008(6)$	$0.031(5)$
Cl 6	$0.059(9)$	$0.049(9)$	$0.000(6)$	0	0	0	$0.036(8)$

was confined mainly to the Cu4 sites. However, there is the possibility that there is some disorder over all the Cu sites. This is implied especially by the results of the conductivity measurements (see below).

Calculations were also done on the enantiomorph including the varying of the Cu site occupancies. Again the indication was that the disorder is mainly in the Cu4 sites. The results indicated that the two enantiomorphs were indistinguishable.

The calculations were carried out with the Structure Determination Package on

TABLE IV
Root Mean Square Amplitudes of Thermal
Vibration (Å)

Ion	Min.	Intermed.	Max.
Rb1	0.165	0.197	0.223
Rb2	0.177	0.184	0.280
Cu1	0.166	0.250	0.348
Cu2	0.200	0.257	0.386
Cu3	0.235	0.235	0.280
Cu4	0.135	0.303	0.303
Cl1	0.205	0.205	0.382
Cl2	0.092	0.167	0.241
Cl3	0.113	0.181	0.290
Cl4	0.177	0.193	0.218
Cl5	0.152	0.171	0.200
Cl6	0.002	0.222	0.244

the PDP11/23 supplied by Molecular Structure Corporation, modified for ions. Atomic scattering factors were taken from Volume 4 of the International Tables for Crystallography.

4. Discussion of the Cation Coordination

The structure has two sets of crystallographically nonequivalent Rb^{+}ions, one in general positions, the other with point symmetry 2 . Both Rb^{+}ions are surrounded by a distorted trigonal prism of Cl^{-}ions, and three additional Cl^{-}ions through the lateral faces of the prism (Figs. 1 and 2). There is a principal difference between the two. Although the $\mathrm{Rb} 1-\mathrm{Cl}$ distances (Fig. 1) have the range 3.27-3.70 \AA, their average is 3.44 \AA, which as will be shown later, is reasonable for a nine-coordination $\mathrm{Rb}-\mathrm{Cl}$ distance. The $\mathrm{Rb} 2-\mathrm{Cl}$ distances have the range $3.28-3.77 \AA$ (Fig. 2) with an average of $3.50 \AA$, somewhat too long for a ninecoordination $\mathrm{Rb}-\mathrm{Cl}$ distance. If the two $3.77-\AA$ distances are excluded, the average of the seven remaining distances is $3.42 \AA$, which is somewhat too long for a sevencoordination $\mathrm{Rb}-\mathrm{Cl}$ distance.

The coordination polyhedron for Rb 1 may be drawn in a different way, that is, to

Frg. 1. Rbl coordination to Cl^{-}ions. Distances are in Ångstroms.
include eight Cl^{-}ions in a distorted antiprism, and a ninth Cl^{-}through a face (this can be readily seen at the top of Fig. 3). As seen in Fig. 3, one could also consider the

Fig. 2. Rb 2 coordination to Cl^{-}ions. Distances are in Ångstroms.

Rb 2 coordination to be represented this way, but it seems less reasonable to do so because of the two long $\mathrm{Rb} 2-\mathrm{Cl}$ distances. In any case, it may be appropriate to con-

Fig. 3. Stereoscopic view of the structure roughly down the b-axis. The box represents $a / 2$ to the right; $b / 4$ to the rear; c, up. Thus, $0<x<\frac{1}{2},-\frac{1}{4}<y<+\frac{1}{4}, 0<z<1$. The smallest circles represent $\mathrm{Cu}{ }^{+}$ ions, the intermediate circles, Rb^{+}ions, and the largest, Cl^{-}ions.

TABLE V
Interionic Distances and Standard Errors (\AA)

Rb1 polyhedron

$\mathrm{Rb}-\mathrm{Cl}$ distances (see Fig. 1) Average 3.44(2)
$\mathrm{Cl}-\mathrm{Cl}$ distances in trigonal prism, see Fig. 1.
External Cl to Cl of trigonal prism
$\mathrm{Cl} 2-\mathrm{Cll} 3.79(1) \quad \mathrm{Cl} 3-\mathrm{Cll} 3.82(2) \quad \mathrm{Cl} 6-\mathrm{Cl} 3(2) 4.17(2)$
$\begin{array}{lrl}-\mathrm{Cl} 3 & 3.73(2) & -\mathrm{Cl} 34.03(3)\end{array}$
$-\mathrm{Cl4} 3.79(1) \quad$-Cl4 3.98(2)
$-\mathrm{Cl} 53.68(2) \quad-\mathrm{Cl} 54.01(2)$
Rb2 polyhedron
$\mathrm{Rb}-\mathrm{Cl}$ distances (see Fig. 2)
Average 3.50(2)
$\mathrm{Cl}-\mathrm{Cl}$ distances in trigonal prism, see Fig. 2.
External Cl to Cl of trigonal prism
$2 \mathrm{Cl} 4-\mathrm{Cl} 23.79(1), 4.10(2)$
-Cl 3 3.99(2)
-Cl4 3.99(2)
Cl6 Cl3 (2)4.17(2)
-Cl 4 (2)4.16(2)
Cul tetrahedron
Cul-Cl2 2.74(2)
-C13 2.24(2), 2.24(2)
-Cl5 2.41(2)
Average 2.41(2)
$\mathrm{Cl} 2-\mathrm{Cl} 33.73(2), 3.86(1)$
-Cl5 3.68(2)
Cl3-Cl3 4.03(3)
$\mathrm{ClS}-\mathrm{Cl} 3$ 3.71(2), 4.01(2) Average 3.84(2)
Cu 2 tetrahedron
Cu2-Cl2 2.38(2), 2.34(2)
-Cl4 2.23(2)
-Cl5 2.64(1)
Average 2.40(2)
$\mathrm{Cl} 2-\mathrm{Cl} 23.87(2)$
$\mathrm{Cl} 4-\mathrm{Cl} 2$ 3.81(2), 4.10(2)
-Cl4 3.91(2)
$\mathrm{Cl} 5-\mathrm{Cl} 23.68(2), 3.85(1)$
Average $3.87(2)$
Cu3 tetrahedron
$\mathrm{Cu} 3-\mathrm{Cl} 12.52(1)$
-Cl 4 (3)2.33(1) Average 2.38(1)
Cl1-Cl4 (3)3.69(2)
Cl4-Cl4 (3)3.99(2)
Average 3.84(2)
Cu 4 tetrahedron
Cu4-Cli 2.20(1)
-Cl 2 (3)2.40(1)
Cl1-Cl2 (3)3.79(2)
$\mathrm{Cl} 2-\mathrm{Cl} 2$ (3)3.87(2)
$\mathrm{Cu}^{+}-\mathrm{Cu}^{+}$distances
$\mathrm{Cul-Cu} 1$ (2)3.03(1), $3.41(1)$
-Cu2 3.325(9)
-Cu4 4.19(1)
Cu2-Cu1 3.325(9)

- Cu2 (2)3.39(1), 4.20(2)
-Cu3 3.21(1)
-Cu4 2.74(1)
$\mathrm{Cu} 3-\mathrm{Cu} 2$ (3)3.21(1)
Cu3-Cu4 4.464(5), 4.725(5)
sider the $\mathrm{Rb} 1-\mathrm{Cl}$ coordination, nine, and designate the $\mathrm{Rb} 2-\mathrm{Cl}$ coordination as $(7+$ 2) to indicate the difference between the two.

There is a precedent for this designation. Messer (10) referred to the coordination of
Rb^{+}to Cl^{-}in RbGeCl_{3} as $7+2$, because in that case, there are seven $\mathrm{Rb}-\mathrm{Cl}$ distances in the range 3.39-3.42 \AA and two equal to $3.72 \AA$. The coordination geometry is quite different from those of Rb 1 and Rb 2 in $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{39}$, however. In RbGeCl_{3}, there is a trigonal prism of Cl^{-}ions but the Rb^{+}is not inside it; it is just outside one of the lateral faces. The remaining three Cl ions, two of which give the $3.72 \AA \mathrm{Rb}-\mathrm{Cl}$ distances, are outside just one of the lateral faces. Furthermore, the vertical $\mathrm{Cl}-\mathrm{Cl}$ distances, 3.38 and $3.56 \AA$, are shorter than the shortest $\mathrm{Cl}-\mathrm{Cl}$ distance in $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$, namely $3.68 \AA$ (Table V). The accepted diameter of the Cl^{-}ion is $3.62 \AA(11)$.

It appears that nine- (or $7+2$) coordination of Rb^{+}to Cl^{-}ions has so far been reported only in RbGeCl_{3}. In RbGeCl_{3}, the average $\mathrm{Rb}-\mathrm{Cl}$ distance is $3.47 \AA$; when the two $3.72 \AA$ distances are excluded, the average $\mathrm{Rb}-\mathrm{Cl}$ distance for the seven is $3.40 \AA$ A.

At least three points are available for estimating the $\mathrm{Rb}-\mathrm{Cl}$ distances for various coordinations. In the NaCl -type RbCl , the lattice constant is $6.5820 \AA$ (12), giving $3.291 \AA$ for the C.N. 6 distance. The estimated lattice constant for $\mathrm{NaCl}-t y p e \mathrm{CsCl}$ is $6.941 \AA(12)$, a factor of 1.0545 times that of RbCl . Assuming that the ratio is the same for the CsCl types gives $3.903 \AA$ for the lattice constant of CsCl-type RbCl or $3.380 \AA$ for the C.N. 8 distance. In the structures of RbNiCl_{3} (13) and RbCoCl_{3} (14) the Rb^{+}ion is coordinated to 12 Cl^{-}ions, with average $\mathrm{Rb}-\mathrm{Cl}$ distances 3.560 (6) and 3.58(1) \AA, respectively. We assume then that the C.N. 12 distance is 3.57 \AA. The three points fall on a straight line, from which one obtains $3.43 \AA$ for the C.N. $9 \mathrm{Rb}-\mathrm{Cl}$ distance.

The average $\mathrm{Rb} 1-\mathrm{Cl}$ value, $3.44 \AA$, including all nine ligands, is in excellent agreement with the derived value, $3.43 \AA$. The average $\mathrm{Rb} 2-\mathrm{Cl}$ value, $3.50 \AA$, is close to a value expected for C.N. 11, but exclu-
sion of the two $3.77 \AA$ distances gives an average value for the remaining seven Rb 2 Cl distances of $3.42 \AA$. The values are close to those of the $(7+2)$-coordination in RbGeCl_{3}.

The Cu^{+}-ion-coordination geometry in this structure also appears to be unusual. There are four sets of crystallographically nonequivalent Cu^{+}ions of which two are in special positions, namely on the threefold axes. One of these sets, Cu4 (Table II), is three-fourths occupied.

In cubic CuCl , the $\mathrm{Cu}-\mathrm{Cl}$ distance is $2.345 \AA$ and the $\mathrm{Cl}-\mathrm{Cl}$ distance is $3.830 \AA$. In $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$, the Cu^{+}ions are in tetrahedra as expected, but there are some anomalies. The average $\mathrm{Cl}-\mathrm{Cl}$ distances (Table V) in the four crystallographically nonequivalent tetrahedra are all close to the value, $3.83 \AA$, in CuCl . The average $\mathrm{Cu}-\mathrm{Cl}$ and $\mathrm{Cu} 2-\mathrm{Cl}$ distances (Table V) are greater than the $\mathrm{Cu}-\mathrm{Cl}$ distance in CuCl , though the difference is not statistically significant. Nevertheless, such greater average $\mathrm{Cu}-\mathrm{Cl}$ distances also occur in $\mathrm{RbCu}_{4} \mathrm{Cl}_{3} \mathrm{I}_{2}$ (15) and $\mathrm{NH}_{4} \mathrm{Cu}_{4} \mathrm{Cl}_{3}\left(\mathrm{I}_{1.9} \mathrm{Cl}_{0.1}\right)$ (16).

The main anomalies occur in the individual $\mathrm{Cu}-\mathrm{Cl}$ distances (Table V). For Cu , there is one very long distance and two relatively short ones; for Cu 2 , there is one very long and one relatively short distance. For Cu 3 , there is one rather long distance, and for Cu 4 , one rather short distance.

5. Description of the Structure

Figure 3 is invaluable for visualizing the structure of $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$. Each unit cell contains 12 tetrahedral groups of Cu 1 ions surrounded by Cl^{-}ion tetrahedra. One such group may be seen in the lower right of Fig. 3. Each of these groups contains an empty Cl octahedron formed from 4 Cl 3 and 2 Cl 5 ions. Each Cul tetrahedron shares a corner with each of the three other Cu1 tetrahedra; this sharing involves the one Cl 5 and two Cl 3 ions in each tetrahedron. Each Cu1 tet-
rahedron also shares a $\mathrm{Cl} 2-\mathrm{Cl} 5$ edge with a Cu 2 tetrahedron; each of the Cl's in this edge is also shared with another Cu 2 tetrahedron. The Cl 2 ion is also shared with a Cu 4 tetrahedron.

The Cu 1 tetrahedron shares a $\mathrm{Cl} 3-\mathrm{Cl} 5$ edge with a trigonal prism surrounding the Rb 1 ion and a $\mathrm{Cl} 2-\mathrm{Cl} 3$ edge with the trigonal prism surrounding the Rb 2 ion. It also shares three edges that the "external" Cl ions make with lateral faces of the trigonal prism of Rbl.

There are four equilateral triangular groups of Cu 2 ions on each threefold axis. The Cu 2 ions in these triangles are at a distance of $3.38 \AA$ from each other (Table V). However, these groups of Cu 2 ions are arranged such that (almost) linear strings of four are arranged along $\langle 110\rangle$ directions (see lower right of Fig. 3). These linear strings intersect with each other throughout the structure.

Each Cu 2 tetrahedron shares a $\mathrm{Cl} 2-\mathrm{Cl} 5$ edge with a Cu 1 tetrahedron, a $\mathrm{Cl} 2-\mathrm{Cl} 2$ edge with a Cu 4 tetrahedron, a Cl 2 corner with another Cu 2 tetrahedron, and a Cl 4 corner with a Cu3 tetrahedron. The Cu2 tetrahedron also shares a $\mathrm{Cl} 4-\mathrm{Cl} 5$ edge with the trigonal prism of Rb 1 and an edge ($\mathrm{Cl} 2-$ Cl 5) that the external Cl ions make with a lateral face of the Rb 1 trigonal prism. The $\mathrm{Cl} 4-\mathrm{Cl} 2(3.81 \AA$) edge of the Cu 2 tetrahedron is also shared by the Rb 2 trigonal prism and the other $\mathrm{Cl} 4-\mathrm{Cl} 2$ ($4.10 \AA$) edge is also one of the edges made by the external Cl 4 ion to a Cl 2 ion of the Rb 2 trigonal prism.

The Cu 3 tetrahedron shares three Cl 4 corners with three Cu 2 tetrahedra and a Cl 1 corner with a Cu4 tetrahedron. Each of the three Cl 1 - Cl 4 edges of the Cu 3 tetrahedron is shared with an edge of the Rb 1 trigonal prism and each $\mathrm{Cl} 4-\mathrm{Cl} 4$ edge is also an edge that an external Cl 4 makes with a Cl4 belonging to the Rb 2 trigonal prism.

Each of the $\mathrm{Cl} 2-\mathrm{Cl} 2$ edges of the Cu 4 tetrahedron is shared with a Cu 2 tetrahe-
dron. Each Cl2 corner is shared with a Cul tetrahedron and the Cl 1 corner is shared with a Cu 3 tetrahedron. The $\mathrm{Cl} 2-\mathrm{Cl} 1$ edge is also an edge that an external Cl 2 makes with a Cl 1 of the Rb 1 trigonal prism.

Four Rb1 and 2 Rb 2 ions form octahedra at the center of which is a Cl6 ion. There are 12 such octahedra in each unit cell. Such octahedra also occur in $\mathrm{Rb}_{4} \mathrm{Cu}_{9} \mathrm{Cl}_{13}$ (5).

For the Cu 1 ion with coordinates given in Table II, the $\mathrm{Cu} 1-\mathrm{Cl} 2$ bond is close to the [111] direction. Using the U_{ij} values of Table III, the rms amplitude of the CuI ion in this direction is $0.34 \AA$, essentially equal to the maximum rms vibration amplitude (Table IV). This is the direction of the longest $\mathrm{Cu}-\mathrm{Cl}$ distance in this tetrahedron, and the Cul ions actually move in and out of the empty octahedron mentioned above.

Three Cu 2 and 1 Cu 3 ions form a tetrahedron of Cu^{+}ions (Fig. 3), similar to that formed by the Cu 1 ions. This tetrahedron also "includes" an empty octahedron of Cl^{-}ions formed from 3 Cl 2 and 3 Cl 1 ions. Along the [$1 \overline{1} 1]$ direction, the rms vibration amplitude of the Cu 2 ion with the coordinates given in Table II, is $0.37 \AA$, very close to the maximum rms vibration amplitude (Table IV). The Cu2-Cl5 bond is close to the [111] direction. Again the Cu 2 ion vibrates into the empty octahedron. Similarly, the maximum rms vibration amplitude of the Cu 3 ion is along the [111] direction, and this largest amplitude is in the case, precisely along the longest bond distance (Table V), Cu3-Cl4.

As to Cu 4 , the lowest rms vibration amplitude (Table IV) is along the [111] direction. This is precisely along the $\mathrm{Cu} 4-\mathrm{Cl} 1$ bond which has the shortest distance, 2.21 \AA (Table V) in the structure. The highest rms vibration amplitudes are along the [$\overline{1} 10$] and [11 $\overline{2}]$ directions. These are not along $\mathrm{Cu} 4-\mathrm{Cl} 2$ bonds, which are closer to 〈111) directions.

The octahedron formed by four Cl 3 and
two Cl5 ions (Fig. 3) shares faces with four Cl1 tetrahedra. The octahedron formed by three Cl 2 and three Cl 4 (Fig. 3) shares faces with three Cu 2 tetrahedra and one Cu 3 and one Cu 4 tetrahedron. There are also two five-cornered ('square") pyramids (Fig. 3): one formed by two Cl 2 , one Cl , one Cl 3 , and one Cl 5 , shares one face with a Cu 1 tetrahedron, one face with a Cu 2 tetrahedron, and one face with a Cu 4 tetrahedron; the second, formed by two Cl 2 , two Cl 4 , and one Cl 5 , shares two faces with Cu 2 tetrahedra. These four polyhedra connect the tetrahedra by face sharing throughout the structure, thereby providing channels for motion, if possible, of Cu^{+}ions. Such connections occur in the $\mathrm{Rb}_{4} \mathrm{Cu}_{9} \mathrm{Cl}_{13}$ structure (5), and Gaines, examining our structure model, found them in ours.

The centers of the first octahedron are in $12 \mathrm{a}: \frac{3}{8}, 0, \frac{1}{4}$; of the second octahedron in 16 c : $x=0.122$, of the first pyramid in 18c: 0.253 , $0.125,0.221$, and of the second pyramid in $24 \mathrm{~d}: x=0.152$. The distance of the center of the first octahedron to the Cul ions is $1.93 \AA$, of the center of the second octahedron to the $\mathrm{Cu} 2, \mathrm{Cu} 3$, and Cu 4 ions, 2.01, 1.98 , and $2.46 \AA$, respectively: of the center of the first pyramid to the $\mathrm{Cu} 1, \mathrm{Cu} 2$, and Cu 4 ions, $2.36,2.35$, and $2.04 \AA$, respectively, and of the center of the second pyramid to the Cu 2 ions, $2.17 \AA$.

There is a rather short $\mathrm{Cu} 2-\mathrm{Cu} 4$ distance, $2.74 \AA$, across a shared $\mathrm{Cl} 2-\mathrm{Cl} 2$ edge. This is by far the shortest $\mathrm{Cu}^{+}-\mathrm{Cu}^{+}$ distance (Table V) in the structure. In Cs$\mathrm{Cu}_{2} \mathrm{Cl}_{2} \mathrm{I}$ (17) the shortest $\mathrm{Cu}^{+}-\mathrm{Cu}^{+}$distance, which is across a $\mathrm{Cl}^{-}-\mathrm{I}^{-}$edge, is $2.90 \AA ; \mathrm{CsCu}_{2} \mathrm{CII}_{2}$ (17), the shortest $\mathrm{Cu}^{+}-\mathrm{Cu}^{+}$distance across an edge is $2.84 \AA$; and in $\mathrm{CsCu}_{2} \mathrm{Cl}_{3}$ (18), it is $2.81 \AA$. Although in the Cs compounds, the shortest $\mathrm{Cu}^{+}-$ Cu^{+}distance is significantly longer than the shortest $\mathrm{Cu}^{+}-\mathrm{Cu}^{+}$distance in $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$, such short cation-cation distances do occur in double-salt halogenides. An exampie is the shortest $\mathrm{Ag}^{+}-\mathrm{Ag}^{+}$distance, $2.78 \AA$,

Fig. 4. $\log _{10}$ (conductivity \times temperature) versus (temperature) ${ }^{-1}$.
across an $\mathrm{I}^{-}-\mathrm{I}^{-}$edge in $\mathrm{SrAg}_{2} \mathrm{I}_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (19).

6. Electrical Conductivity

The plot of $\log _{10}(\sigma T)$ vs T^{-1} (Fig. 4) is, within experimental error, a straight line, giving an enthalpy of activation of motion, h_{m}, of 0.35 eV . This value is in contrast to 0.10 eV , for the best solid electrolytes such as $\mathrm{RbAg}_{4} \mathrm{I}_{5}$, and up to about 0.20 for good ones. The h_{m} for $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$ is comparable with that of $\mathrm{Ag}_{2} \mathrm{HgI}_{4}$ which has an h_{m} of $0.33 \mathrm{eV}(20)$, and which is not a good solid electrolyte.

At 298 K , the specific electrical conductivity is $3.2 \times 10^{-5} \Omega^{-1} \mathrm{~cm}^{-1}$ and at 420 K , it is $1.1 \times 10^{-3} \Omega^{-1} \mathrm{~cm}^{-1}$. These are rather low conductivities, but are, nevertheless, substantially larger than for defect-type ionic conductors like sodium chloride. Further, the $\log _{10}(\sigma T)$ vs T^{-1} behavior is not that of the latter (8), but rather more like that of a true solid electrolyte.

It appears that the channels described in the preceding section do provide the means for some Cu^{+}ion drift when an electric field
is imposed on the crystals of $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$. The least-squares calculations indicated that the octahedra and "square" pyramids were empty, implying that the residence times of the Cu^{+}ions in these sites are very low. The calculations also did not rule out the possibility of some vacancies in the Cu 1 and Cu 2 sites. However, there are only 228 sites for the $124 \mathrm{Cu}^{+}$ions per unit cell and it would appear that the movements of the Cu^{+}ions should be strongly correlated.

Acknowledgments

This work was supported by the National Science Foundation under Grant DMR-8103035 through the Ceramics Program of the Division of Materials Research. We thank R. C. Haltiwanger for collecting the diffraction data.

References

1. T. Matsui and J. B. Wagner, Jr., J. Electrochem. Soc. 124, 937, 941 (1977).
2. T. Takahashi, O. Yamamoto, S. Yamada, and S. Hayashi, J. Electrochem. Soc. 126, 1654 (1979).
3. K. Nag and S. Geller, J. Electrochem. Soc. 128, 2670 (1981).
4. C. Brink and C. H. MacGillavry, Acta Crystallogr. 2, 158 (1949).
5. J. M. Gaines and S. Geller, J. Electrochem. Soc., in press.
6. Xie Sishen and S. Geller, J. Solid State Chem. 63, 326 (1986).
7. P. B. Crandall, Rev. Sci. Instrum. 41, 1895 (1970) and references therein.
8. S. Geller, A. K. Ray, and K. Nag, J. Solid State Chem. 48, 176 (1983).
9. S. Geller, S. A. Wilber, G. F. Ruse, J. R. Akridge, and A. Turković, Phys. Rev. B 21, 2506 (1980).
10. D. Messer, Z. Naturforsch. B: Anorg. Chem. Org. Chem. 33, 366 (1978).
11. L. Pauling, "The Nature of the Chemical Bond," 3rd ed., p. 514, Cornell Univ. Press, Ithaca, N.Y. (1960).
12. J. D. H. Donnay and H. Ondik, Eds., in "Crystal Data, Determinative Tables," 3rd ed., Vol. 4, Inorganic Compounds, U.S. Dept. of Commerce and Joint Committee on Powder Standards, Washington, D.C. 1973.
13. R. W. Asmussen, T. Kindt Larsen, and H. 17. S. Geller and J. M. Gaines, J. Solid State Soling, Acta Chem. Scand. 23, 2055 (1969).
14. Å. Engberg and H. Soling, Acta Chem. Scand. 21, 168 (1967). Chem. 59, 116 (1985).
15. S. Geller, J. R. Akridge and S. A. Wilber, Phys. Rev. B 19, 5396 (1979).
16. S. Geller, J. R. Akridge, and S. A. Wilber, J. Electrochem Soc. 127, 251 (1980).
17. C. Brink, N. F. Binnendiuk, and J. van de Linde, Acta Crystallogr. 7, 176 (1954).
18. S. Geller and T. O. Dudley, J. Solid State Chem. 26, 321 (1978).
19. K. W. Browall and J. S. Kasper, J. Solid State Chem. 15, 54 (1975).

[^0]: * On leave from the Institute of Physics, Chinese Academy of Sciences, Beijing, China.

